
 

Social​ ​Media​ ​Writing​ ​Style​ ​Fingerprint 
 
 

Himank​ ​Yadav,​ ​Juliang​ ​Li 
Department​ ​of​ ​Computer​ ​Science​ ​and​ ​Engineering 

Texas​ ​A&M​ ​University 
{hyadav,​ ​juliang0705}@tamu.edu 

 
 
 
 

Abstract 

We present our approach for computer-aided      
social media text authorship attribution based      
on recent advances in short text authorship       
verification. We use various natural language      
techniques to create word-level and     
character-level models that act as hidden      
layers to simulate a simple neural network.       
The choice of word-level and character-level      
models in each layer was informed through       
validation performance. The output layer of      
our system uses an unweighted majority vote       
vector to arrive at a conclusion. We also        
considered writing bias in social media posts       
while collecting our training dataset to      
increase system robustness. Our system     
achieved a precision, recall and F-measure of       
0.82,​ ​0.926​ ​and​ ​0.869​ ​respectively. 

1 Introduction 

Humans have the cognitive ability to understand       
various writing styles and distinguish between writing       
samples from different authors. This also allows       
humans to tell whether or not a writing sample         
belongs to a given author after having read enough of          
their articles. We want to apply computer-aided       
authorship detection on shorter writing samples that       
we gathered through social media to intelligently       
identify authors of such posts. In this paper, we         
explore how we can identify whether a given author’s         
writing actually belongs to them by using various        
natural​ ​language​ ​and​ ​machine​ ​learning​ ​approaches. 
 
Methods to determine authorship of a writing sample        
have been developed and studied a lot since 19​th         
Century. The most famous example was figuring out        
authors for federalist papers, a collection of       
politically-motivated articles. It has formed a branch       
in nature language processing called stylometry.      
There are several stylometric features we can consider        
in order to measure the similarities between author’s        
writing and the target writing sample. These features        

can be primarily categorized as lexical, syntactic,       
semantic, and application specific. As technology      
advances and computing becomes faster and more       
accessible, various statistical and machine learning      
methods make it possible to use these features to         
distinguish between writing samples of various      
authors with relatively high confidence. In this paper,        
we study Reddit posts and are able to tell whether the           
post belongs to a given user or not. Reddit is a social            
news aggregation website where users can share news        
articles and make comments to contribute to       
discussion. Normally, a comment is short (no more        
than 100 words) and casual in nature. We are         
particularly interested in these comments to see which        
user account they belong to. We built various        
word-level and character-level models utilizing     
stylometric features and aggregated the results using       
an unweighted majority voting system to arrive at a         
final decision. With this method of ensemble learning,        
we are able to achieve fairly high system        
performance. 

2 Motivation 

We are in an information era now where social media          
is booming and a ton of data is generated daily. There           
are several applications of being able to identify the         
author of a short text, such as detecting hacked social          
media accounts. If we are able to verify that posts          
coming from a certain account do not seem to be          
written by the actual owner of the account, that could          
be a possible indication of a hacked account.        
Moreover, we could establish the credibility of a        
source. We figure out the credibility of a piece of          
content (post or a comment) written by a user on          
social media if we are able to detect whether the          
content posted is actually by the account owner or         
someone else. This is very useful as many notable         
politicians, such as presidents, are using social media        
to post politically motivated writings. In addition, we        
can prevent negative phenomenon like bullying in       
group texts, messages, or an aggregated piece of text         
if we are able to identify who the author might be           
from​ ​a​ ​potential​ ​pool​ ​of​ ​contributors.  

 



 

 
2.1​ ​​ ​Personal​ ​Motivation 
 
One of our close friends had his Facebook account         
hacked multiple times and did not realize that he had          
been hacked until a few days had passed even though          
there were posts made from his account. When we         
noticed that the content posted from his account did         
not look like something he would write, we notified         
him immediately, and he was able to regain control of          
his​ ​account. 
 

 
Figure​ ​1:​​ ​Our​ ​friend’s​ ​post​ ​​ ​after​ ​getting​ ​hacked 

 
This led to us exploring more about what we could do           
to aid this process of detecting authorship in social         
media​ ​posts​ ​and​ ​its​ ​various​ ​use​ ​cases. 

3 Result 

We collected over 1000 comments made by Redditor        
VRCkid and 1000 random comments made by top 20         
Reddit users. We built five models for VRCkid and         
partitioned 70 percent of his posts as training data and          
cross-tested with 30 percent of VRCkid’s remaining       
posts combined with 30% of other aggregated random        
Redditors’ posts. We used 10-fold cross-validation      
and were able to achieve a precision, recall and         
F-measure​ ​of​ ​0.82,​ ​0.926​ ​and​ ​0.869​ ​respectively. 

4 Experiment 

We began by collecting user comments from Reddit        
and applied a combination of five different models to         
conduct​ ​our​ ​experiment. 

4.1 Data​ ​Collection 

We used Python Reddit API Wrapper (PRAW) library        
to pull user data from Reddit and save it in JSON           
format so we can interpret and process it easily later.          
We considered bias in social media posts on Reddit         
and realized that most posts made by authors in         
subreddits were a collection of best practices,       
questions, and links, and these did not accurately        
describe the author’s natural writing style. Hence, we        
decided to focus on the authors’ comments instead.        

Comments on Reddit seemed to more naturally reflect        
author’s writing and provided a better sense of their         
writing style. We gathered 1000 random comments       
for the 20 top Redditor’s in addition to all of          
VRCkid’s comments, and we separated them by user        
names. Each file we stored represented a user and         
contained​ ​an​ ​array​ ​of​ ​strings. 

4.2 Method​ ​1:​ ​Word​ ​Frequency 

A comment can be viewed as an array of word          
tokens. The tokens can be the actual word, a         
punctuation or a number. A natural way to detect if          
the person is the actual writer of the text is to check            
the vocabulary richness of this person’s writing       
against the vocabulary richness of the text [1]. This         
approach makes sense since we do not expect the         
author of the text to suddenly use a lot of different           
words than what they would normally use in their         
other writings. Hence, we want to build a vector of          
word frequencies and pick the top results [2]. To get          
word tokens, we use NLTK library’s casual tweet        
Tokenizer. It also works well in extracting the word         
tokens for our Reddit comments since the comments        
on Reddit are similar to tweets on Twitter in that they           
are both short, casual and may contain online slangs         
or​ ​grammatical​ ​errors. 
 
 
 
 
 
 
 

Figure​ ​2:​​ ​Top​ ​20​ ​words​ ​for​ ​VRCkid  
 
The above graph shows the top twenty most        
frequently used words by Redditor VRCKid. Even       
though these words are fairly common and not        
particularly interesting, we did find some unique       
words that only VRCkid would use in the top 400          
most frequent words. For example, “Google”, “game”       
and “Dota” appear fairly often as this person is a          
gamer with interests in technology. With that       
information, we can build a bag of words        
representation of the text in order to carry out the          
machine learning algorithm. We decided to use a        
maximum entropy algorithm to train the model. We        
trained the model using 70% of VRCkid’s comments        
and 70% of random Redditors’ comments, making the        

 



 

total training set a matrix with a size equal to N *            
1400, where N is the feature size and 1400 is the           
number of training samples. The feature size directly        
depends on the size of the bag of words. We tried           
many size of features in order to see which size would           
produce​ ​best​ ​results. 

 
Figure​ ​3:​ ​​Graph​ ​comparing​ ​accuracy​ ​with​ ​feature​ ​size​ ​for 

bag​ ​of​ ​words 

As can be seen in the above graph, the performance of           
the algorithm only minorly increases as the size of         
features increase. And once the size increases to 500,         
the correctness goes down and stays at 69 percent.         
The highest performance, which is 76.5 percent,       
occurs when feature size equals 480. It is interesting         
to see that the performance actually decreases with        
more features. It is also worthwhile to note that         
VRCKid has about 5065 unique words in our training         
sample. We also tried increasing the feature size and         
using a support vector machine (SVM) algorithm to        
train the model since maxent is known for overfitting         
and SVM can deal with higher dimensionality training        
data better. However, the accuracy we get with 5000         
features is almost the same as 1000 features. The         
drawback of this approach is that it completely        
disregards the word order. For example, the phrase,        
“Wake up”, is seen as “Wake” and “Up”, which does          
not mean the same thing when it is separated. To          
solve this, we can use word N-gram to include the          
relative order of the words. However, since there is         
almost an unlimited combination of words, the       
resulting data is very sparse so it does not produce          
better​ ​results​ ​than​ ​a​ ​single​ ​word​ ​frequency. 

4.3 Method 2: Character N-gram    
Frequency 

Similar to the word frequency approach, this       
approach views the comments as a sequence of        
characters [3]. Viewing comments this way enables       
us to count character and punctuation frequencies.       
However, if we only count frequency of characters,        
the dataset would be very limited as there are only 26           
letters in English. Therefore, we count the character        
n-grams in the text. This enables us to capture         

contextual information as well as lexical information.       
Another benefit of doing character-base n-gram is       
that the noise in the data does not affect the training           
sample as there are only finite set of n-gram         
candidates. Assuming the data is only in ASCII form,         
if we do unigrams, the maximum size is 128. If we           
use bigrams, the maximum size would be 16,384. The         
size does not grow much in comparison to the bigram          
for counting words. When considering unigrams, the       
most frequently occurring character is “ ”, the empty         
space character followed by “e”. When considering       
bigrams, the most frequently occurring pair is “e” and         
“ ” followed by “ ” and “t”. With the frequency           
counts, we are able to extract top elements and use a           
bag of words method to decide the features and how          
to construct them; this is very similar to what we did           
in the previous method. There are many ways to pick          
the number of grams and the size of the data. We           
tried a few combinations, trained them using logistic        
regression and were able to produce the following        
results​ ​as​ ​mentioned​ ​in​ ​the​ ​table. 
 
 

Features 
Size 
/ 
Gram-size 

100 200 300 400 500 

1 0.763 0.763 0.764 0.766 0.763 

2 0.728 0.73 0.741 0.772 0.772 

3 0.722 0.731 0.732 0.729 0.728 

4 0.699 0.689 0.691 0.730 0.741 

5 0.694 0.696 0.728 0.718 0.729 

6 0.684 0.694 0.687 0.707 0.697 

7 0.689 0.681 0.688 0.681 0.692 

8 0.691 0.684 0.674 0.695 0.698 

9 0.703 0.694 0.688 0.686 0.684 

10 0.702 0.699 0.696 0.691 0.690 
Table​ ​1:​​ ​Accuracy​ ​per​ ​feature​ ​and​ ​n-gram​ ​size​ ​for​ ​character 

n-grams 
 
 

As shown in the table, unigram performs very well         
and is fairly stable, since the size of features don’t          
impact the result as much. This can be explained by          
the fact that the maximum size of unigram is fairly          
small. On the other hand, as the gram size increases,          
the accuracy actually decreases. This can be explained        
by the fact that data would be much sparser with more           
grams. However, bigram produces the best result and        
it looks like there is an upward trend. Therefore, we          
decided to focus on bigrams and did some additional         
experiments​ ​on​ ​bigram.  

 



 

 
Figure​ ​4:​ ​​Graph​ ​comparing​ ​accuracy​ ​with​ ​feature​ ​size​ ​for 

bigrams 
 
As can be seen from the above graph, the         
performance of the algorithm generally increases as       
the size of features increases. The correctness goes up         
rapidly from when the feature size is 10 to when the           
feature size increases to 400. However, it seems to         
have a ceiling, and the highest performance of 79         
percent occurs when the feature size equals 860.        
Overall,​ ​this​ ​approach​ ​produces​ ​very​ ​good​ ​results. 

4.4 Method​ ​3:​ ​Parts​ ​of​ ​Speech 

Another approach to analyze the given comment is to         
look at the syntactic information. The author of the         
text may subconsciously write sentences using similar       
syntactic structure [2]. We can use this information to         
generate a fingerprint of the author. One important        
aspect of syntactic information is parts of speech.        
There are eight major parts of speech: Noun, Pronoun,         
Verb, Adverb, Adjective, Conjunction, Preposition     
and Interjection. With those parts of speech, we can         
consider n-grams to count the combinations occurring       
in the comment, similar to what we did with method          
2. Also, similar to method 2, there are various ways to           
pick the gram size and feature size for training.         
Therefore, we tried a few different combinations,       
trained them using logistic regression and were able to         
produce the following results as mentioned in the        
table. 
 

 Gram 
size 

Top​ ​1 
frequency 

Top​ ​2 
frequency 

Top​ ​3 
frequency 

1 NN IN DT 

2 DT,​ ​NN IN,​ ​DT PRP,​ ​VBP 

3 IN,​ ​DT,​ ​NN DT,​ ​JJ,​ ​NN DT,​ ​NN,​ ​IN 

4 NN,​ ​IN, 
DT,​ ​NN 

IN,​ ​DT,​ ​NN, IN,​ ​DT,​ ​JJ, 
NN 

Table​ ​2:​​ ​Most​ ​frequent​ ​parts​ ​of​ ​speech​ ​per​ ​n-gram​ ​size 

As can be seen from the table, with unigram, the          
author VRCKid uses common nouns the most. With        
bigram, he uses determiners followed by common       
pronouns often. With trigram, he uses phrases such as         
“for good games” most frequently. With this       
information, we decided to try out a few combinations         
of gram size and the feature size to see how it           
performs. 

 

Gram 
size 
/ 
Feature 
size 

1 2 3 4 5 

30 0.729 0.681 0.689 0.691 0.689 

80 0.732 0.698 0.675 0.691 0.686 

130 0.714 0.676 0.678 0.694 0.682 

180 0.725 0.694 0.679 0.675 0.685 

230 0.725 0.722 0.694 0.679 0.680 

280 0.725 0.719 0.692 0.685 0.674 
330 0.738 0.704 0.698 0.676 0.685 

380 0.725 0.716 0.696 0.690 0.684 

430 0.724 0.720 0.701 0.678 0.680 

480 0.727 0.716 0.699 0.690 0.680 
530 0.719 0.718 0.685 0.679 0.682 
580 0.720 0.717 0.700 0.688 0.682 

Table​ ​3:​​ ​Accuracy​ ​per​ ​feature​ ​and​ ​n-gram​ ​size​ ​for​ ​parts​ ​of 
speech 
 

Interestingly, unigrams produce the best performance,      
and as the size of the features grows, accuracy grows          
too, but there is a ceiling. We think that the reason           
multi-grams cannot compete with unigrams is because       
of data sparsity, similar to what method 2 suffers         
from.​ ​Overall,​ ​we​ ​are​ ​satisfied​ ​with​ ​this​ ​performance. 

4.5 Method​ ​4:​ ​Lexical​ ​K-Means​ ​Cluster 

Unlike the previous three methods, this approach       
focuses on unsupervised learning where we analyze       
writing patterns and draw inferences without      
providing labeled data. We do cluster analysis using        
the very popular k-means clustering algorithm. In this        
case, the k value is two and we partition our data into            
two distinct clusters based on distance to the centroid         
of a cluster. This two cluster approach acts as a          
classifier since it groups the given data into texts         
authored by the given author and texts authored by         
everyone else based on our feature set. Our goal         
while constructing the feature set and picking features        
was to focus on features that captured distinctive        

 



 

aspects of an author’s writing style and maintained        
consistency, even when the author wrote on different        
subjects on various forms of social media. This led us          
to explore lexical, structural, syntactic and      
punctuation features. We considered the average      
number of sentences per word, sentence length       
variation and lexical vocabulary diversity. Sentence      
variation is calculated by measuring standard      
deviation of the words per sentence. Sentence       
variation provides us with a measure of how much         
and how frequently the author varies their sentence        
length. Lexical vocabulary diversity represents the      
richness of the author's vocabulary and is based on         
how frequently the author repeats words in sentences        
as compared to using new words. For punctuation, we         
calculated the average number of most commonly       
used punctuation marks, like colon, semicolon and       
commas. These lexical and punctuation features      
capture distinctive aspects of the author's writing       
style while being topic agnostic. Below are some        
statistics we garnered from VRCkids’s comments.      
The data represented in the graph below has been         
averaged​ ​for​ ​all​ ​sentences​ ​in​ ​comments. 

 
Figure​ ​5:​​ ​Graph​ ​of​ ​average​ ​number​ ​of​ ​words​ ​per​ ​sentence 

averaged​ ​across​ ​a​ ​comment​ ​for​ ​all​ ​comments 
 

 
As we notice from the graph above, the average         
number of words per sentence for a comment by         
VRCkid is concentrated in the range from four to         
twenty words per sentence, with very few exceptions.        
This is a potentially important and discriminatory       
feature to consider since any comment with more than         
25 words per sentence has a very low probability of          
being authored by VRCkid. We further analyzed other        
discriminatory lexical and punctuation features for      
VRCkid, and our results are presented in the tables         
below. 
 

Average​ ​number​ ​of​ ​words​ ​per​ ​sentence 10.98 

Average​ ​sentence​ ​length​ ​variation 2.55 

Average​ ​vocabulary​ ​diversity 0.90 

Table​ ​4:​​ ​Lexical​ ​diversity​ ​of​ ​comments 
 
 

Average​ ​semicolon​ ​per​ ​sentence  0 

Average​ ​colon​ ​per​ ​sentence 0.058 

Average​ ​commas​ ​per​ ​sentence 0.19 

Table​ ​5:​​ ​Punctuation​ ​diversity​ ​of​ ​comments 
 
 

As we notice, VRCkid never used semicolons in his         
comments, and any comment with a semicolon has a         
very negligible probability of being authored by       
VRCkid. Overall, this model was able to achieve an         
accuracy of 69 percent individually using the feature        
set​ ​we​ ​specified​ ​above.  

4.6 Method 5: Short Text Verification     
classifier 

So far, some of the approaches we have considered         
rely on stylometric techniques that analyze linguistic       
styles and writing characteristics. Although     
stylometric techniques work well for author detection       
for large documents, they may perform poorly for        
short pieces of text because of their lack of structure          
and short length. To deal with this problem, we         
looked at a new supervised learning algorithm with        
an n-gram analysis approach that checks the identity        
of an author for a short text [4]. Stylistics features can           
be broadly classified as lexical, structural, syntactic       
and content specific. Within lexical features, n-gram       
features are effective and noise tolerant. While most        
previous approaches consist of looking at n-gram       
frequency, this approach looks at the presence or        
absence of n-grams and the relationship they have        
with the training dataset. This reduces the n-gram        
features to one, therefore leading to a reduction in         
complexity and the time consumed by the classifier        
for processing data. This model generates separate       
profiles for each user in the collection, and this is          
broken into a training and verification step. The        
training phase entails building the user profile, while        
the verification phase checks and verifies the user        
profile built through the training phase. The training        
phase is further divided into two parts - computing a          
user profile and computing a threshold. The first part         
of the training phase computes the user profile by         
extracting n-grams from the provided sample      
document while the second part computes a user        

 



 

threshold that we use later during the verification        
phase. 

We begin by dividing the training data about a          
user into two subsets. We calculate the number of         
n-grams in the first subset, while we divide the second          
subset further into multiple blocks of characters of        
equal size. Next, we explore the percentage of unique         
n-grams shared by character blocks of other users        
with the set of unique n-grams occurring in the first          
split of our user’s training set ( ). The block is      PU

B
     

considered to be our user’s work if and only if this           
calculated percentage of unique n-grams shared by the        
block with n-grams in the training set is greater than          
the sum of a specific computed user threshold and a          
predefined constant. Below is the algorithm used to        
calculate​ ​threshold​ ​for​ ​a​ ​given​ ​user. 

Reference:​ ​Brocardo​ ​et.​ ​al.​ ​[4] 
 
We also consider FRR and FAR while iteratively        
computing​ ​a​ ​threshold​ ​for​ ​a​ ​user. 

FRR - False Rejection Rate is the probability that          
the model would not recognize the correct author of         
the​ ​document.  

FAR - False Acceptance Rate is the probability         
that the model will wrongly recognize someone as the         
author​ ​of​ ​the​ ​text. 

The threshold is calculated through a      
supervised learning technique as depicted above, and       

is incrementally varied by minimizing the difference       
between FAR and FRR values, with a goal of making          
them equal. Once we have a threshold value, FAR         
and​ ​FRR​ ​are​ ​calculated​ ​as​ ​follows. 
 
FRR​ ​calculation 

 
Loop​ ​number_of_blocks​ ​times​ ​{ 

if​ ​ <​ ​threshold​ ​+​ ​constantPU
 B

  

then​ ​false_rejection​ ​+=​ ​1 
} 

alse_rejection_rate  f = false_rejection
number_of_blocks  

 

 

FAR​ ​calculation 
 

Loop​ ​number_of_other_users​ ​times 
{ 

Loop​ ​number_of_blocks​ ​times 
{ 

​ ​​ ​if​ ​ ​ ​threshold+constantPU
 B

  ≥  

​ ​​ ​then​ ​false_acceptance​ ​+=​ ​1 
} 

} 

 

 number_of_blocks  NB =   

N  number_of_other_users   OU =   

AR F =  
N   NB

*
OU

false_acceptance
 

 

 
We evaluated this approach on VRCkid’s data and        
varied our parameters to compare results. We began        
by varying the predefined constant gamma ( ) that is      γ    
used along with the threshold to verify the author of          
text.  
 

 
​ ​​ ​​ ​Figure​ ​6:​​ ​Graph​ ​comparing​ ​performance​ ​with​ ​Gamma 

 
The performance (F-measure and accuracy) peaks      
when for our given training and test set for  γ = 3          

 



 

  

VRCkid. In addition, we also looked at variation from         
different​ ​values​ ​for​ ​n-grams. 
 

 
Figure​ ​7:​​ ​Graph​ ​comparing​ ​performance​ ​with​ ​n-gram​ ​size 

 
Similar to the n-gram performance also peaks  ,γ       
when . Overall, we were able to get a 77  3  n =           
percent​ ​accuracy​ ​with​ ​this​ ​model. 

4.7 The​ ​Voting​ ​System 

We have discussed five different classifiers to train        
and detect whether the text belongs to the author or          
not. Every classifier has its strengths and weaknesses.        
For example, word frequency classifier cannot      
capture the natural ordering of the words, and the         
n-gram approach suffers from data sparsity.      
Therefore, we want to combine their strengths to        
overcome their weaknesses. The structure of the final        
classifier is very similar to that of a neural network;          
there is only one layer with five nodes. The final          
layer uses an unweighted majority-vote strategy to       
determine the output based on the output from the         
middle layer. For example, if the output vector for the          
middle layer is , we would output true,   1, , , , ][ 1 1 0 0      
as there are more ones that outweigh the zeros. We          
output false if it is the other way round. With this           
strategy, we are able to get even better results than          
what the classifiers could do individually. The       
following are accuracy results from a 10-fold       
cross-validation​ ​test. 
 

Fold​ ​1 0.819 
Fold​ ​2 0.810 
Fold​ ​3 0.824 
Fold​ ​4 0.819 
Fold​ ​5 0.794 
Fold​ ​6 0.813 
Fold​ ​7 0.794 
Fold​ ​8 0.789 
Fold​ ​9 0.826 
Fold​ ​10 0.778 
Average 0.807 

Table​ ​6:​​ ​Accuracy​ ​attained​ ​by​ ​an​ ​unweighted​ ​​ ​majority​ ​vote 
 

The performance is slightly better than the best        
performance made by character base n-gram. This       
way of classification is called ensemble learning, a        
machine learning paradigm where multiple models are       
trained to tackle the same problem. As we can see,          
ensemble learning yielded better results for      
classifying​ ​short​ ​social​ ​media​ ​text​ ​messages. 

5 Conclusion 

We discuss five approaches to tackle the problem of         
figuring the authorship of a short text, namely Reddit         
comments in our case. The five approaches explore        
the relationship and limitations in lexical feature,       
character based features and syntactic features of the        
data. In the end, we are able to combine the classifiers           
to create a voting system and attain a precision, recall          
and​ ​F-measure​ ​of​ ​0.82,​ ​0.926​ ​and​ ​0.869​ ​respectively. 

6 Limitations 

Reddit is one source we looked at. Although, we         
could apply our approach to other forms of social         
media, it would be harder to do so for social media           
websites like Facebook, where users compose even       
shorter text. Moreover, we did not take into        
consideration other factors that could lead to       
identifying authors, like the location the post was        
made at. Lastly, our targeted Redditor, VRCkid, only        
has less than one thousand comments. The data may         
not be enough to generate a very accurate fingerprint         
for​ ​authorship​ ​detection. 

7 Future​ ​Work 

There are many other stylometric features that can be         
explored further. We have only touched the surface of         
lexical analysis via word frequency, character      
analysis via character n-grams and syntactic structure       
via part of speech parsing. In addition to these         
features, we can also try out concepts like semantic         
measurement. For example, does the author always       
use words that are synonyms to what they normally         
use? Also, sentence and phrase structure can be        
explored by using a partial or full parser to break          
down the text. In addition, our voting system is         
unweighted. We could potentially explore adding      
weights to our final majority vote vector to improve         
performance​ ​of​ ​our​ ​system. 
 

References  

[1]​ ​​Min​ ​Yang, Xiaojun​ ​Chen, Wenting​ ​Tu, Ziyu 
Lu, Jia​ ​Zhu, Qiang​ ​Qu,​ ​A​ ​Topic​ ​Drift​ ​Model​ ​for 
authorship​ ​attribution, ​Neurocomputing​, 2018, ​273​, 
133 

 



 

[2]​ ​​Stamatatos,​ ​E.​ ​(2009),​ ​A​ ​survey​ ​of​ ​modern 
authorship​ ​attribution​ ​methods.​ ​J.​ ​Am.​ ​Soc.​ ​Inf.​ ​Sci., 
60:​ ​538–556.​ ​doi:10.1002/asi.21001 
 
[3]​ ​Kešelj,​ ​Vlado,​ ​et​ ​al.​ ​"N-gram-based​ ​author 
profiles​ ​for​ ​authorship​ ​attribution."​ ​Proceedings​ ​of 
the​ ​conference​ ​pacific​ ​association​ ​for​ ​computational 
linguistics,​ ​PACLING.​ ​Vol.​ ​3.​ ​2003. 
 
[4]​ ​Brocardo,​ ​Marcelo​ ​Luiz,​ ​et​ ​al.​ ​"Authorship 
verification​ ​for​ ​short​ ​messages​ ​using​ ​stylometry." 
Computer,​ ​Information​ ​and​ ​Telecommunication 
Systems​ ​(CITS),​ ​2013​ ​International​ ​Conference​ ​on. 
IEEE,​ ​2013. 
 
[5]​ ​Peng,​ ​Fuchun,​ ​et​ ​al.​ ​"Language​ ​independent 
authorship​ ​attribution​ ​using​ ​character​ ​level​ ​language 
models."​ ​Proceedings​ ​of​ ​the​ ​tenth​ ​conference​ ​on 
European​ ​chapter​ ​of​ ​the​ ​Association​ ​for 
Computational​ ​Linguistics-Volume​ ​1.​ ​Association​ ​for 
Computational​ ​Linguistics,​ ​2003. 
 
[6]​ ​Zhao,​ ​Ying,​ ​and​ ​Justin​ ​Zobel.​ ​"Effective​ ​and 
scalable​ ​authorship​ ​attribution​ ​using​ ​function​ ​words." 
AIRS.​ ​Vol.​ ​3689.​ ​2005. 
 
[7]​ ​Stamatatos,​ ​Efstathios.​ ​"Authorship​ ​attribution 
based​ ​on​ ​feature​ ​set​ ​subspacing​ ​ensembles." 
International​ ​Journal​ ​on​ ​Artificial​ ​Intelligence​ ​Tools 
15.05​ ​(2006):​ ​823-838. 
 
[8]​ ​Stamatatos,​ ​Efstathios,​ ​Nikos​ ​Fakotakis,​ ​and 
Georgios​ ​Kokkinakis.​ ​"Computer-based​ ​authorship 
attribution​ ​without​ ​lexical​ ​measures."​ ​Computers​ ​and 
the​ ​Humanities​ ​35.2​ ​(2001):​ ​193-214. 
 
[9]​ ​Eder,​ ​Maciej.​ ​"Does​ ​size​ ​matter?​ ​Authorship 
attribution,​ ​small​ ​samples,​ ​big​ ​problem."​ ​Digital 
Scholarship​ ​in​ ​the​ ​Humanities​ ​30.2​ ​(2013):​ ​167-182. 
 
[10]​ ​Kaster,​ ​Andreas,​ ​Stefan​ ​Siersdorfer,​ ​and​ ​Gerhard 
Weikum.​ ​"Combining​ ​text​ ​and​ ​linguistic​ ​document 
representations​ ​for​ ​authorship​ ​attribution."​ ​SIGIR 
workshop:​ ​stylistic​ ​analysis​ ​of​ ​text​ ​for​ ​information 
access.​ ​2005. 
 
[11]​ ​Vijayaraghavan,​ ​Prashanth,​ ​et​ ​al.​ ​"Deepstance​ ​at 
semeval-2016​ ​task​ ​6:​ ​Detecting​ ​stance​ ​in​ ​tweets​ ​using 
character​ ​and​ ​word-level​ ​cnns."​ ​arXiv​ ​preprint 
arXiv:1606.05694​ ​(2016). 
 
[12]​ ​Savoy,​ ​Jacques.​ ​"Authorship​ ​attribution​ ​based​ ​on 
specific​ ​vocabulary."​ ​ACM​ ​Transactions​ ​on 
Information​ ​Systems​ ​(TOIS)​ ​30.2​ ​(2012):​ ​12. 

 


